

(5)

Multiple Choice Choose the next figure in the pattern.

(A)

Name all points that are collinear to points Nand Z.

the sequence?

What is the next number in

2, -1, -4, -7

Multiple Choice What does the symbol \overrightarrow{BC} represent?

- \triangle segment BC
- B line BC
- \bigcirc point B
- \bigcirc ray BC
- © ray CB

MQ = 30, MN = 5,MN = NO, and OP = PO. MNO

Find the length of \overline{OQ} .

Multiple Choice An angle measuring 35° would be a(n) __?_.

- A acute angle B obtuse angle
- © right angle D straight angle
- (E) adjacent angle

両nd m L BDC.

(0)

Find the midpoint of a segment with endpoints A(3, -2) and B(8, 1).

Midpoint =
$$\frac{X_1 + X_2}{2}$$
, $\frac{Y_1 + Y_2}{2}$

Find the value of x.

(12)

Multiple Choice Find the circumference of the circle. (Use $\pi \approx 3.14$.)

Circumference = 2∏d

Where d = diameter

Multiple Choice What is the inverse of "If water is ice, then the water's temperature is 32°F?"

- A If water's temperature is 32°F, then it is ice.
- B If water is not ice, then its temperature is not 32°F.
- If water's temperature is not 32°F, then water is not ice.
- Water is ice if and only if its temperature is 32°F.
- E None of the above

Multiple Choice What is the biconditional form of the statement "If a whitetail deer has antlers, then it is a male deer?"

- A whitetail deer has no antlers if and only if it is not a male deer.
- (B) A whitetail deer has antlers if and only if it is a male deer.
- If a whitetail deer has no antlers, then it is not a male deer.
- If a whitetail deer is male, then it has antlers.
- (E) None of the above

Multiple Choice Solve 5x = -10, then choose the property that applies to the required step.

- Substitution property
- Addition property
- © Division property
- D Distributive property
- E Reflexive property

In WXYZ, $\overline{WZ} \cong \overline{XY}$.

What is the value of x?

iwo angles $\angle 1$ and $\angle 2$ are complementary. If $m\angle 1$ is 27°, what is $m\angle 2$?

term can be used to describe a triangle that has no equal sides?

What is the $m \angle 1$?

(b)

Given $\triangle PQR \cong \triangle XYZ$, which side is congruent to \overline{PR} ?

Congruent to FA:

3

Which of the following terms can be used to describe a triangle whose angle measures are 30°, 120°, and 30°?

- A acute
- B) obtuse
- © isosceles
- night 🕦
- **E** equiangular

4

In the diagram, \overrightarrow{MN} is the perpendicular bisector of \overrightarrow{AD} . What are the values of x and y?

(5)

What special type of quadrilateral has the vertices F(-6, -2), G(1, -2), H(-6, -5), and I(1, -5)?

- (A) rectangle
- B square
- © parallelogram
- nhombus
- E kite

Which angles are vertical angles?

- \triangle $\angle 1$ and $\angle 2$
- \bigcirc Z1 and Z5
- ∠3 and ∠5
- \bigcirc $\angle 1$ and $\angle 4$
- \bigcirc $\angle 4$ and $\angle 5$

What is the measure of $\angle B$?

Choose the statement that is true about a kite.

- Only one pair of opposite angles are congruent.
- (B) Opposite sides are congruent.
- Diagonals bisect each other.
- Diagonals are congruent.
- None of these are true.

What is the value of x?

30
~

If
$$m \angle 3 = 126^\circ$$
, then $m \angle 2 = ?$

Which theorem or postulate shows $j \parallel k$?

- Alt. Int. \(\alpha\)
 Converse
- B Cons. Int. &
- C Alt. Ext. 4 Converse
- D Corresp. & Converse
- None of these

Find the slope of the line that passes through (5, 2) and (8, -1).

Slope =
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

An octagon has how many sides?

A polygon with 7 sides is

called a ?

- A nonagon
- **B** dodecagon
- c heptagon
- hexagon
- decagon

Which figure below is a polygon?

I.

Ш.

- A I only
- B II only
- © III only
- ① I and III
- none of these

Opposite angles of a paral-

lelogram must be ______

- B supplementary
- © congruent
- A and C
- B and C

In trapezoid KLMN, KL

and NM are ?

- A legs
- B bases
- © consecutive angles
- (D) diagonals
- E none of these

Solve x + 12 = 24, then choose the property that applies to the required step.

Substitution property of equality.

- Division property of equality.
- © Subtraction property of equality.
- Distributive property of equality.
- (E) Reflexive property of equality.

are what type of angles?

- (A) corresponding angles
- B alternate interior angles
- C alternate exterior angles

(D)

E consecutive exterior angles

consecutive interior angles

A baseball "diamond" is a square with side lengths of 90 feet.

- a. Copy the diagram and label each side of the square with the correct measurements along each base path.
- b. What is the measurement of each angle formed at the 3 bases and home plate?
- c. Using the Pythagorean Theorem, how far is a throw from third base to first base? Round to the hundredths.

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

Show all work or explain...even if you use mental math or a calculator.

Draw three noncollinear points, A, B, and C.

Then draw point D on line AB between points A and B.

Draw segment CD. Draw (CA and ray CB.

Are points A, B, and D collinear? Are points B, C, and D collinear?

Are \overrightarrow{CA} and \overrightarrow{CB} opposite rays? Are \overrightarrow{DA} and \overrightarrow{DB} opposite rays?

6. Find the value of x.

7. Find the measures of all three angles of the triangle.

8. Find the measure of $\angle A$ below.

9. Find the measures of angles A, B, and C.

[A] B and D

[B] B and C

[C] A and D

[D] A and B

11. If
$$\triangle RPQ \cong \triangle JKL$$
, then $\overline{LJ} \cong \underline{\hspace{1cm}}$

12. The two triangle-shaped gardens are congruent. Find the missing side lengths and angle measures.

9.7 ft

13. If $\triangle ABC \cong \triangle DEF$, AB = 24 feet, $m \angle B = 43^{\circ}$, and $m \angle F = 31^{\circ}$, which of the following statements is <u>false</u>?

[A]
$$\angle D \cong \angle A$$

[B]
$$m \angle A = 106^{\circ}$$

[C]
$$FD = 24 \text{ ft}$$

8 ft

[D]
$$ED = AB$$

14. If $\triangle ABC \cong \triangle PQR$ and $\triangle PQR \cong \triangle LMK$, then $\triangle ABC \cong \triangle LMK$. This illustrates which property of congruence?

Complete the crossword puzzle.

300111° near 8a d 7 e g ment 13 e c c a	i e
---	-----

ACROSS

- 3. Points on the same line
- 4. A point on a line and all points of the line to one side of it.
- An angle whose measure is greater than 90.
- 10. Two endpoints and all points between them.
- 16. A flat figure with no thickness that extends indefinitely in all directions.
- 17. Segments of equal length are ____ segments.
- Two noncollinear rays with a common endpoint.
- 19. If $m \angle A + m \angle B = 180$, then $\angle A$ and $\angle B$ are angles.

DOWN

- 1. The set of all points collinear to two points is a _____.
- 2. The point where the x- and y-axis meet.
- 5. An angle whose measure is less than 90.
- 6. If $m \angle A + m \angle B = 90$, then $\angle A$ and $\angle B$ are ____ angles.
- 7. Lines that meet at a 90° angle are ____
- 8. Two angles with a common side but no common interior points are _____.
- An "angle" formed by opposite rays is a ____ angle.
- 11. The middle point of a line segment.
- 12. Points that lie in the same plane are ____
- 13. The four parts of a coordinate plane.
- 14. Two nonadjacent angles formed by two intersecting lines are ____ angles.
- 15. In angle ABC, point B is the _____